Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation.

نویسندگان

  • Jérôme Cuny
  • Yu Xie
  • Chris J Pickard
  • Ali A Hassanali
چکیده

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental tools to probe the local atomic order of a wide range of solid-state compounds. However, due to the complexity of the related spectra, in particular for amorphous materials, their interpretation in terms of structural information is often challenging. These difficulties can be overcome by combining molecular dynamics simulations to generate realistic structural models with an ab initio evaluation of the corresponding chemical shift and quadrupolar coupling tensors. However, due to computational constraints, this approach is limited to relatively small system sizes which, for amorphous materials, prevents an adequate statistical sampling of the distribution of the local environments that is required to quantitatively describe the system. In this work, we present an approach to efficiently and accurately predict the NMR parameters of very large systems. This is achieved by using a high-dimensional neural-network representation of NMR parameters that are calculated using an ab initio formalism. To illustrate the potential of this approach, we applied this neural-network NMR (NN-NMR) method on the (17)O and (29)Si quadrupolar coupling and chemical shift parameters of various crystalline silica polymorphs and silica glasses. This approach is, in principal, general and has the potential to be applied to predict the NMR properties of various materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation of Machine Learning Methods Applied to Structure Prediction in Condensed Matter

Materials characterization remains a significant, time-consuming undertaking. Generally speaking, spectroscopic techniques are used in conjunction with empirical and ab-initio calculations in order to elucidate structure. These experimental and computational methods typically require significant human input and interpretation, particularly with regards to novel materials. Recently, the applicat...

متن کامل

Descriptions of surface chemical reactions using a neural network representation of the potential-energy surface

A neural network NN approach is proposed for the representation of six-dimensional ab initio potentialenergy surfaces PES for the dissociation of a diatomic molecule at surfaces. We report tests of NN representations that are fitted to six-dimensional analytical PESs for H2 dissociation on the clean and the sulfur covered Pd 100 surfaces. For the present study we use high-dimensional analytical...

متن کامل

Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data

This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric str...

متن کامل

Three-dimensional structure determination of N-(p-Tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy.

The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are sufficiently large and free of imperfectio...

متن کامل

Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc02709a Click here for additional data file.

Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP Katharina Märker, ab Subhradip Paul, ǁab Carlos Fernández-de-Alba,ab Daniel Lee,ab JeanMarie Mouesca,ab Sabine Hediger,abc Gaël De Paëpe*ab Univ. Grenoble Alpes, INAC, F-38000 Grenoble, France. CEA, INAC, F-38000 Grenoble, France. CNRS, MEM, F-38000 Grenob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2016